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Abstract. 

                In this short note, two MATLAB procedures are presented that can be used to automatically 

evaluate double and triple integrals on irregular regions.    

               

1. Introduction 

 
Since we can not analytically integrate every function, the need for approximate integration 

formulas is obvious. In addition, there might be situations where the given function can be 

integrated analytically, and yet an approximation formula may end up being a more efficient 

alternative to evaluating the exact value of the integral. The MATLAB function quad is available 

to perform approximate single integrations. MATLAB has a command dblquad which can be 

used to automatically evaluate a double integral over a rectangular region. If the integration 

region D is not rectangular, but is vertically or horizontally simple, then a number of options may 

be carried out: 

(1) A change of variables may be used to transform D into a square region R. Then dblquad 

is used on R. 

(2) If the inner integration can be calculated by hand, then the problem can be reduced to a 

single integral, the MATLAB function quad is available to perform approximate single 

integrations. 

(3) A integrand function f(x, y) can be defined on a rectangular region R⊇D (containing the 

actual integration region D) in such away that f(x, y) = 0 for (x, y) D; that is, the value of the 

function becomes zero outside the integration region D, which may result in more computations. 

Then dblquad is used over the region R. 

 

MATLAB has a built-in triple integrator triplequad which can be used to automatically 

evaluate a triple integral over a cubic region, it can be used on an irregular region in a similar 

way as in (3), the other real option is to reduce the triple integral to a single integration and a 

double integral, then the methods of above are used. Using whatever methods to evaluate 

multiple integrals is very difficult by hand, unless the region and the integrand function are very 

simple.  

 

In this paper, we provide two MATLAB procedures that can be used to automatically 

evaluate double and triple integrals over irregular integration regions, when the multiple integral 

is written as the iterated integrals. As each iterated integral is based on a composite Gaussian 

quadrature, we first review Gaussian Quadratures. 

 

                                                 
1
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2. Gaussian Quadrature 

 
Consider an ordinary quadrature rule with n points 

1 2, ,..., nx x x and weights
1 2, ,...,w w  

nw : 

                                                  
1

( ) ( )
nb

i i
a

i

f x dx w f x



 

 

What is the maximal possible degree of precision? (k degree of precision means that the rule is 

exact on all polynomials of degree at most k). For any number of points, an upper bound is 

provided in [1]: the degree of precision of an n-point rule is less than 2n. We shall show that the 

maximum possible degree of precision 2n-1 is achieved by a unique n-point rule. Without loss of 

generality, we may restrict to the interval [a, b] = [-1, 1]. Our chief tool will be the Legendre 

polynomials ( )nP x . Recall that deg Pn = n and Pn is 2([ 1,1])L  - orthogonal to 1n  (where n  

denotes the space of polynomials of degree  n). Let 1 2 ... nx x x    denote the roots of Pn, 

which we know to be distinct and to belong to [-1, 1]. These are called the n Gauss points on [-1, 

1]. We define a quadrature rule by
1 1

1 1
( ) ( )nf x dx I f x dx

 
  , where 1( )n nI f x   is the Lagrange 

interpolant to ( )f x  at the n Gauss points. This is a standard interpolatory quadrature rule: 

                                  
1 1

1 1
1 1,

( ) ( ),  
nn

j

n i i i

i j j i i j

x x
I f x w f x w dx

x x 
  


 


   . 

This rule is called the n-point Gauss rule (Gauss-Legendre integration formula).  

 

Theorem 2. 1 [1]. The n-point Gauss rule has degree of precision equal to 2n-1. 

 

The constants iw  and the roots ix of the Legendre polynomials have been extensively tabulated. 

Table 2.1[1] lists these values for n=2, 3, 4, and 5. 

 

An integral ( )
b

a
f x dx  over an arbitrary [a, b] can be transformed into an integral over [-1, 

1] by using the change of variable:  

                                                         
2 2

b a b a
x t

 
   .                                                         (1) 

Hence 

                                       
( )

b

a
f x dx =

1

12 2 2

b a b a b a
f t dt



   
 

 
 .                                        (2) 

 

This allows the n-point Gauss rule to be applied on any interval [a, b]. The composite n-point 

Gauss rule requires that for a positive integer m, subdivide the interval [a, b] into m subintervals, 

and then apply the n-point Gauss rule to each subinterval. 

 

      Note: We apply traditional techniques using either vertical or horizontal partitions (dx or dy 

respectively) to calculate a definite integral. 
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                                                   Table 2.1  node points and weights 

n     xk    wk 

2 3

3
 , 

3

3
 

 

1, 1 

3 1
15

5
 , 0, 

1
15

5
  

5

9
, 

8

9
,
5

9
 

4 1
525 70 30

35
  , 

1
525 70 30

35
   

1
525 70 30

35
  

1
525 70 30

35
  

1 1
30

36 2
   

1 1
30

36 2
  

1 1
30

36 2
  

1 1
30

36 2
   

5 -0.90617984593866  -

0.53846931010568  0  

0.53846931010568 

0.90617984593866 

0.23692688505618  

0.47862867049937  

0.56888888888889  

0.47862867049937 

0.23692688505618 

 

3. Double integral 

 
In this section, we consider the numerical integration of a function ( , )f x y with respect to two 

variables x and y over the integration region {( , ) | ,  ( ) ( )}D x y a x b c x y d x     . The double 

integral quadratures in this paper are used when Fubini’s theorem is valid so a double integral is 

expressible in terms of iterated integrals. 

( , )
D

S f x y dxdy  =
( )

( )
( , )

b d x

a c x
dx f x y dy  .                                     (3) 

There are different ways to approximate (3) (see [2, 3, 4]). In this note, the numerical formula for 

this double integration over a two-dimensional region takes the form 

,

1 1

( , , ( ), ( )) ( , )
m n

i j i i j

i j

S a b c x d x w v f x y
 

  .                                       (4) 

Here the weights ,i jw v depend on the method of one-dimensional integration we choose.  

We introduce a double integration routine “gaussdbl (fun, a, b, c, d, tol)” which uses the 

composite 5-point Gauss rule for both integrations and calls another routine “gauss2int”. The 

details are given in the routine gaussdbl. The left/right boundary a/b of integration region given as 

the second/third input argument must be a number, while the lower/upper boundary c/d of 

integration region given as the fourth/fifth input argument may be either a number or a function of 
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x. The sixth input argument tol is an absolute error tolerance, the default value is 10
-5

. The program 

terminates when abs(gauss2int(fun, a, b, c, d, 2M, 2N)- gauss2int(fun, a, b, c, d, M, N))<tol, where 

M/N is a positive integer, it is the number of subintervals of [a, b]/[c, d]. 

 

function ss=gaussdbl(fun, a, b, c, d, tol) 

if nargin==5  

      tol=1.0e-5; 

end 

M=2; N=2; 

Smn=gauss2int(fun, a, b, c, d, 1, 1); 

S2mn=gauss2int(fun, a, b, c, d, M, N); 

k=1; 

while abs(Smn-S2mn)>=tol & k<9 

      Smn=S2mn; 

      M=2*M; 

      N=2*N; 

      k=k+1; 

      S2mn=gauss2int(fun, a, b, c, d, M, N); 

end 

ss=S2mn; 

function ss=gauss2int(fun, a, b, c, d, M, N) 

t=[-0.90617984593866, -0.53846931010568, 0, 0.53846931010568, 0.90617984593866]; 

A=[0.23692688505618, 0.47862867049937, 0.56888888888889, 0.47862867049937, 

0.23692688505618]; 

hx=(b-a)/M;  

for k=1:M+1; 

x(k)=a+(k-1)*hx; 

end 

ss=0; 

for k=1:M 

       stt(1:5)=0; 

    for j=1:5 

           tt(j)=((x(k+1)-x(k))*t(j)+x(k+1)+x(k))/2; 

          if isnumeric(c) 

                ct(j)=c;  

          else 

                ct(j)=feval(c, tt(j));  % in case c is given as a function of x 

          end 

          if isnumeric(d) 

                dt(j)=d;  

          else 

                dt(j)=feval(d, tt(j));  

          end 

          stt(j)=gaussfy(fun, tt(j), ct(j), dt(j), N); 

 end 

       ss=ss+sum(A.*stt)*(x(k+1)-x(k))/2; 
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 end 

function s=gaussfy(fun, x, c, d, N)   

% use the composite 5-point Gauss rule for fun over [c, d] 

s=0; 

for k=1:N+1 

       h=(d-c)/N; 

       c1(k)=c+h*(k-1); 

end 

for k=1:N 

       s=s+glegend(fun, x, c1(k), c1(k+1)); 

 end 

function I=glegend(fun, x, c, d) 

% use the 5-point Gauss rule for fun over [c, d] 

if nargin==2 

       c=-1; d=1; 

end 

t=[-0.90617984593866, -0.53846931010568, 0, 0.53846931010568, 0.90617984593866]; 

A=[0.23692688505618, 0.47862867049937, 0.56888888888889, 0.47862867049937, 

0.23692688505618]; 

for k=1:5 

y(k)=((d-c)*t(k)+c+d)/2;  

fy(k)=feval(fun, x, y(k)); 

s1=fy(k); 

      if s1==-inf 

            s1=-realmax; 

     end 

     if s1==inf 

           s1=realmax; 

     end 

end 

I=A*fy'*(d-c)/2;  

 

Example 1 Use routine gaussdbl to approximate
2 2( )cos

D
S y sin x+ y xdxdy  , for the region D in 

the plane described by / 2 / 2,  x y         .  

  

Solution: The exact value of S is 
32

3 3

 
 . We calculate S by gaussdbl, we get S =  

19.62365356938493 and error = 3.81650e-10. 

 

Remarks. (a) We compare gauss2int (or gaussdbl) with MATLAB program dblquad and 

TwoD[4]. gauss2int used 1400 evaluations to compute S to obtain a result in error by 103.85 10 . 

With 10(144) evaluations of the integrand, TwoD computed an approximation with error 
91.67 10 and dblquad used 1574 evaluations to obtain a result in error by 71.1 10 .  
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(b) For 
2 ( )

0.1

0 0
( )

d x

I xy dydx   , with 

2 3

3 2( ) 3 1 ( )
2

x
d x

 
  

 
(see [4]). gauss2int used 89375 

evaluations to calculate I in error by 48.72 10 ,  with 190(144) evaluations of the integrand, 

TwoD compute an approximation with error 42.29 10 . We see that approximations of I computed 

by gauss2int and TwoD are very close. 

(c) For the families (2), (3) in [4], with same tolerance, we compare gaussdbl with MATLAB 

program dblquad and TwoD [4], and we find that approximations computed by gaussdbl and TwoD 

are very close, gaussdbl and TwoD appear to be more efficient than dblquad. 

(d)  For the families (2) in [4], with same tolerance, we use gaussdbl, TwoD and dblquad to 

compute 500 integrals, gaussdbl took 11.20s, dblquad took 14.17s, and TwoD took 2.56s. For the 

families (3) in [4], gauss2int used 93600 evaluations to compute 20 integrals, which  took 19.49s,  

dblquad used 451718 evaluations, which  took 43.48s,  and TwoD used 10902 evaluations , which  

took 7.61s, and all approximations computed by gauss2int, dblquad and TwoD are almost same. 

By above (a), (b), (c) and (d), we see that gauss2int (gaussdbl) appears to be more efficient 

than dblquad and TwoD appears to be more efficient than gauss2int.  

 

Example 2 Use routine gaussdbl to approximate
2 2D

x y
S dxdy

x y




 , for the region D in the plane  

described by 2 2 1x y   and 1x y  .   

 

Solution: The integral region D  is shown shaded in Figure 1. The integration region D  is written 

as the iterated integral
2 2D

x y
S dxdy

x y





21 1

2 20 1

x

x

x y
dx dy

x y








  , it is also expressible as                 

1 1
2 2

1 120 0
sin cos sin cos

(sin cos )
(sin cos )

r
S d rdr d dr

r

 

   

 
   

 

 
   

 
    . It is easily to show that 

2
2

S


  . 

 
                         Figure 1 the integral region D 

 

We constructed a MATLAB program “exa2” in order to use the routines gaussdbl, TwoD and 

dblquad for computing S. 
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function exa2 

c_x=@(theta)1./(sin(theta)+cos(theta)); 

fun2=@(theta, r)sin(theta)+cos(theta); 

tic 

SS1=gaussdbl(fun2, 0, pi/2, c_x, 1) 

toc 

err1=SS1-(2-pi/2) 

tic 

SS2=TwoD(fun2, 0, pi/2, c_x, 1) 

toc 

err2=SS2-(2-pi/2) 

tic 

SS3=dblquad(@fexa2,0, pi/2, 0, 1) 

toc 

err3=SS3-(2-pi/2) 

 function v=fexa2(theta, r) 

% Set fexa2(theta, r)=0 outside region. 

v=(sin(theta)+cos(theta)).*(r>=1./(sin(theta)+cos(theta))); 

end 

end 

 We run the program “exa2.m” to get the following results.  

>> exa2 

SS1 = 0.429203673205172 

Elapsed time is 0.006496 seconds. 

err1 = 6.89e-014 

SS2 = 0.429203673205103 

Elapsed time is 0.006716 seconds. 

err2 =  -1.11e-016 

SS3 = 0.429200625654125 

Elapsed time is 0.201904 seconds. 

err3 =  -3.05e-006 

 

Example 3 Use routine gaussdbl to approximate the volume of the solid   bounded by the plane 

2z x  and the surface 2 2 4z x y    as displayed in Figure 2.  

 

Solution: The integral region D  is determined by the circle 
2 21 9

( )
2 4

x y   , that is 

2

21 9
{( , ) | }

2 4
D x y x y

 
    

 
= 2 2{( , ) | 2 2 ,  1 2}x y x x y x x x          . Thus the 

volume of the solid   

 2 24 (2 ) d
D

V x y x S     
   

2

2

2 2
2 2

1 2
4 (2 )

x x

x x
dx x y x dy

 

   

     
   . 
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We know that the exact value of V  is 
81

32
 . We constructed a MATLAB program “exa3” in order 

to use the routines gaussdbl, TwoD and dblquad for computing V. 

 

 
                           Figure 2  the solid  

function exa3 

x=[-1:0.05:2]; 

y=[-3/2:0.05:3/2]; 

[X, Y]=meshgrid(x, y); 

exa3_f1=inline('4-x.^2-y.^2', 'x', 'y'); 

exa3_f2=inline('2-x', 'x', 'y'); 

exa3_fun=@(x, y)2-x.^2-y.^2+x;   

Z1=exa3_f1(X, Y); 

Z2=exa3_f2(X, Y); 

mesh(X, Y, Z1); 

hold on; 

mesh(X, Y, Z2); 

hold off 

c_x=@(x)-sqrt(2-x.^2+x); 

d_x=@(x)sqrt(2-x.^2+x); 

tic 

V1=gaussdbl(exa3_fun, -1, 2, c_x, d_x) 

toc 

err1=81/32*pi-V1 

tic 

V2=TwoD(exa3_fun, -1, 2, c_x, d_x) 

toc 

err2=81/32*pi-V2 

tic 

-1

0

1

2

-2

-1

0

1

2
-4

-2

0

2

4
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V3=dblquad(@fexa3, -1, 2, -2,2) 

toc 

err3=81/32*pi-V3 

function v=fexa3(x, y) 

% Set fexa3(x, y)=0 outside region. 

v=(2-x.^2-y.^2+x).*(-sqrt(2-x.^2+x)<=y).*(y<=sqrt(2-x.^2+x)); 

end 

end 

 We run the program “exa3.m” to get the following results.  

>> exa3 

V1 =  7.952155747734767 

Elapsed time is 0.598901 seconds. 

err1 =  6.5666e-007 

V2 = 7.952156282679086 

Elapsed time is 0.032663 seconds. 

err2 = 1.2172e-007 

V3 = 7.952162828115892 

Elapsed time is 0.274504 seconds. 

err3 = -6.4237e-006 

 

4. Triple integral 

 

Suppose that a triple integral can be written as the iterated integral ( , , )V f x y z dxdydz


 
2 2

1 1

( ) ( , )

( ) ( , )
( , , )

b y x z x y

a y x z x y
dx dy f x y z dz    , and let 

2

1

( , )

( , )
( , ) ( , , )

z x y

z x y
g x y f x y z dz  , 

2

1

( )

( )
( ) ( , )

y x

y x
h x g x y dy  , 

( )
b

a
V h x dx  . We introduce a triple integration routine gausscub(fun, a1, a2, b1, b2, c1, c2, tol)  

that calls another routine “gauss3int(fun, a1, a2, b1, b2, c1, c2, N1, N2, N3)” which uses the 

composite 5-point Gauss rule for each integral. The computational steps are as follows. 

(1) Subdivide the interval [a, b] into N1 subintervals, apply the 5-point Gauss rule to each 

subinterval 1[ , ]k kx x  , and apply the composite 5-point Gauss rule for ( )h x over [ , ]a b , which calls 

another routine “gaussfx2()” for computing ( )kh x (see (2)). 

(2) For fixed kx , subdivide the interval 1 2[ ( ), ( )]k ky x y x into N2 subintervals, apply the 5-point 

Gauss rule to each subinterval, and apply the composite 5-point Gauss rule for ( , )kg x y over 

1 2[ ( ), ( )]k ky x y x to get ( )kh x , which calls another routine “gaussfx3()” for computing ( , )k jg x y

(see (3)).  

(3) For fixed ,k jx y subdivide the interval 1 2[ ( , ), ( , )]k j k jz x y z x y into N3 subintervals, apply 

the 5-point Gauss rule to each subinterval, and apply the composite 5-point Gauss rule for 

( , , )k jf x y z over 1 2[ ( , ), ( , )]k j k jz x y z x y to get ( , )k jg x y .  

The details are given in the routine gausscub(fun, a1, a2, b1, b2, c1, c2, tol). The front/back 

boundary a1/a2 of variable x of integration region given as the second/third input argument must 

be a number, the left/right boundary b1/b2 of variable y of integration region given as the 
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fourth/fifth input argument may be either a number or a function of x , while the lower/upper 

boundary c1/c2 of variable z of integration region given as the sixth/seventh input argument may 

be either a number or a function of ,x y . The eighth input argument tol is an absolute error 

tolerance, the default value is 10
-5

. The program terminates when abs(gauss3int(fun, a1, a2, b1, 

b2, c1, c2, 2*N1, 2*N2, 2*N3)- gauss3int(fun, a1, a2, b1, b2, c1, c2, N1, N2, N3))<tol, where 

N1/N2 /N3 is a positive integer, it is the number of subintervals of [a1, a2]/ [b1, b2]/ [c1, c2]. 

 

function vv=gausscub(fun, a1, a2, b1, b2, c1, c2, tol) 

if nargin==7  

      tol=1.0e-5; 

end 

M=2; 

Vmn=gauss3int(fun, a1, a2, b1, b2, c1, c2, 1, 1, 1) 

V2mn=gauss3int(fun, a1, a2, b1, b2, c1, c2, M, M, M) 

k=1; 

while abs(Vmn-V2mn)>=tol & k<10 

      Vmn=V2mn; 

      M=2*M; 

       k=k+1; 

      V2mn=gauss3int(fun, a1, a2, b1, b2, c1, c2, M, M, M) 

end 

vv=V2mn; 

 

function ss=gauss3int(fun, a1, a2, b1, b2, c1, c2, N1, N2, N3) 

t=[-0.90617984593866 -0.53846931010568 0 0.53846931010568 0.90617984593866]; 

A=[0.23692688505618  0.47862867049937 0.56888888888889 0.47862867049937 

0.23692688505618]; 

hx1=(a2-a1)/N1;  

for k=1:N1+1; 

x1(k)=a1+(k-1)*hx1; 

end 

ss=0; 

for k=1:N1 

     for j=1:5 

           ta(j)=((x1(k+1)-x1(k))*t(j)+x1(k+1)+x1(k))/2; 

           sta(j)=gaussfx2(fun, ta(j), b1, b2, c1, c2, N2, N3); 

     end 

     ss=ss+sum(A.*sta)*hx1/2;    

 end 

    

function ss=gaussfx2(fun, x1, b1, b2, c1, c2, N2, N3) 

% use the composite 5-point Gauss rule for fun over [b1, b2] 

t=[-0.90617984593866 -0.53846931010568 0 0.53846931010568 0.90617984593866]; 

A=[0.23692688505618  0.47862867049937 0.56888888888889 0.47862867049937 

0.23692688505618]; 
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if isnumeric(b1) 

            by1=b1;  

     else 

            by1=feval(b1, x1);  % in case b1 is given as a function of x 

     end 

     if isnumeric(b2) 

            by2=b2;  

     else 

            by2=feval(b2, x1); % in case b2 is given as a function of x 

  end 

hx2=(by2-by1)/N2;  

for k=1:N2+1; 

          x2(k)=by1+(k-1)*hx2; 

end 

ss=0; 

for k=1:N2 

        for j=1:5 

               tb(j)=((x2(k+1)-x2(k))*t(j)+x2(k+1)+x2(k))/2; 

               stb(j)=gaussfx3(fun, x1, tb(j), c1, c2, N3); 

        end 

           ss=ss+sum(A.*stb)*hx2/2; 

 end 

   

function s=gaussfx3(fun, x1, x2, c1, c2, N)   

% use the composite 5-point Gauss rule for fun over [c1, c2] 

t=[-0.90617984593866 -0.53846931010568 0 0.53846931010568 0.90617984593866]; 

A=[0.23692688505618  0.47862867049937 0.56888888888889 0.47862867049937 

0.23692688505618]; 

   if isnumeric(c1) 

          cz1=c1;  

   else 

          cz1=feval(c1, x1, x2);  % in case b1 is given as a function of x, y 

   end 

   if isnumeric(c2) 

          cz2=c2;  

   else 

          cz2=feval(c2, x1, x2); % in case b2 is given as a function of x, y 

   end 

   h=(cz2-cz1)/N; 

   s=0; 

   for k=1:N+1 

          cc1(k)=cz1+h*(k-1); 

   end 

   for k=1:N 

       for j=1:5 

             x3(j)=((cc1(k+1)-cc1(k))*t(j)+cc1(k+1)+cc1(k))/2;  
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             fx3(j)=feval(fun, x1, x2, x3(j)); 

             s1=fx3(j); 

       if s1==-inf 

             s1=-realmax; 

       end 

       if s1==inf 

             s1=realmax; 

       end 

             fx3(j)=s1; 

       end 

             s=s+A*(fx3)'*h/2;  

end 

 

We discuss the performance of gausscub and triplequad on a family of  

                                       
1 1 1

1 1 1 2 2 3 3 3 2 1
0 0 0

cos(2 )x x x dx dx dx        .                                (5) 

Each problem is constructed as follows: First 
1  is picked randomly from [0,  1] . The parameters 

1 2,    and 
3  are picked randomly from [0,  1] and then scaled so that 1 2 3 15     . For the 

family (5), gausscub used 1137500 evaluations of the integrand to compute the 100 integrals which 

took 19.47s, and triplequad used 801422 evaluations, which took 93.22s. We compare the 

approximations computed by gausscub and triplequad with the approximations computed by 

MATLAB function  “int” for the 100 integrals, and find that gausscub appears to be notably more 

efficient than triplquad. 

 

Example 4 Use routine gausscub to approximate the triple integral 

( 2 )sinV x z ydv


   = 4

0 0 0
( 2 )sin

y y z

dy dz x z ydx




   . 

 

Solution: The order of iterated integral is y z x  , for using routines gausscub and triplequad, 

the integrand and the bound functions of the integral should be defined in this order (see the 

following MATLAB program “exa4”). The exact value of V  is 

3 217 17 17 17
2 2 2 2

8 2 768 64
     . 

 

function exa4 

b2=inline('y', 'y'); 

c2=inline('y+z ', 'y ', 'z '); 

exam_4=inline('(x+2*z)*sin(y)', 'y', 'z', 'x '); 

VV=(17*sqrt(2)*pi/8-17*sqrt(2)/2-17*sqrt(2)*pi^3/768+17*sqrt(2)*pi^2/64); 

tic 

V1=gausscub(exam_4, 0, pi/4, 0, b2, 0, c2) 

toc 

err1=VV-V1 

tic 
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V2=triplequad(@fexa4, 0, pi/4, 0, pi/4, 0, pi/2) 

toc 

err2=VV-V2 

function v=fexa4(y, z, x) 

% Set fexa4(x, y, z)=0 outside region. 

v=(x+2*z).*sin(y).*(z<=y).*(x<=(y+z)); 

end 

end 

We run the program “exa4.m” to get the following results.  

>> exa4 

V1 = 0.157205682755273 

Elapsed time is 6.960517 seconds. 

err1 = 2.914e-015 

V2 = 0.157214226369327 

Elapsed time is 1.141406 seconds. 

err2 = -8.5436e-006 

 

We see that the degree of approximation of the result evaluated by the routine gausscub is very 

high, and gausscub appears to be more efficient than triplequad.  

 

Example 5 Find the triple iterated integral  
2 2 2

1

0 0 0
3 ( ( ) 10 ( ) 3 ( ) 4 ( ) ( ))xy zze cos xy cos xy xy xysin xV dy cos xy x y sin x zdydy x

 
        . 

 

Solution: We constructed a MATLAB program “exa5” in order to use the routines gausscub and 

triplequad for computing V. 

 

function exa5 

s=1.2712461501573769451057243381669; % the value computed by Matlab function int  

fevals=0; 

tic 

s1=gausscub(@fun1, 0, 1, 0, pi, 0, pi) 

toc  

err1=s1-s 

fprintf(['This cost ', num2str(fevals),' evaluations of f. \n']) 

fevals=0; 

tic 

s2=triplequad(@fun1, 0, 1, 0, pi, 0, pi) 

toc 

err2=s2-s 

fprintf(['This cost ',num2str(fevals),' evaluations of f. \n']) 

 

 function v=fun1(x, y, z) 

% Set fun1(x,y,z)=0 outside region. 

fevals=fevals+1; 
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v=-3.*z.*exp(-x.*y-z.^2).*(cos(x.*y)-10.*cos(x.*y).*x.*y+3*x.^2.*sin(x.*y).*y.^2 

+4.*cos(x.*y).*x.^2.*y^2-sin(x.*y)); 

end 

end 

 

We run the program “exa5.m” to get the following results. 

  

 >> exa5 

s1= 1.271246152898202 

Elapsed time is 0.19 seconds. 

err1 = 2.7408e-009 

This cost 11375 evaluations of f.  

s2= 1.271246466089101 

Elapsed time is 1.8 seconds. 

err2 = 3.16e-007 

This cost 15692 evaluations of f. 

 

Example 6 Use gausscub and triplequad to approximate xyzdxdydz


 , here  is the region in  

the first octant bounded by the cylinder 2 2 4x y  , the  sphere 2 2 2 4x y z   , and the plane  

8x y z    as displayed in Figure 3.  

 
Figure 3  the region  

 

Solution: We rewrite the above triple integral as the iterated integral. 
2

2 2

2 4 8

0 0 4

x x y

x y
V xyzdxdydz dx dy xyzdz

  

 


     . 

We constructed a MATLAB program “exa6” in order to use the routine gausscub and triplequad for 

computing V . 
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function exa6 

v=20.34426877; % the value computed by the maple function int 

cxy=inline('8-x-y', 'x', 'y'); 

dxy=inline('sqrt(4-x^2-y^2)', 'x', 'y'); 

bx=inline('sqrt(4-x^2)', 'x'); 

fevals=0; 

tic 

v1=gausscub(@fexa6, 0, 2, 0, bx, dxy, cxy, 0.01) 

err1=v1-v 

fprintf(['This cost ', num2str(fevals),' evaluations of f. \n']) 

toc  

fevals=0; 

tic 

v2=triplequad(@fun1, 0, 2, 0, 2, 0, 8, 0.00001) 

err2=v2-v 

fprintf(['This cost ', num2str(fevals),' evaluations of f. \n']) 

toc  

 

function w=fexa6(x, y, z) 

fevals=fevals+1; 

w=sqrt(x*y*z); 

end 

       

function w=fun1(x, y, z) 

% Set fun1(x, y, z)=0 outside region. 

fevals=fevals+1; 

w=sqrt(x*y*z).*(y<=sqrt(4-x.^2)).*(z>=sqrt(4-x.^2-y.^2)).*(z<=(8-x-y)); 

end 

end 

 

 We run the program “exa6.m” to get the following results.  

>> exa6 

v1=20.352902524600498 

err1=0.008633754600499 

This cost 11375 evaluations of f.  

Elapsed time is 1.049463 seconds. 

v2=20.312806858385787 

err2= -0.031461911614212 

This cost 209684 evaluations of f.  

Elapsed time is 25.553564 seconds. 

 

5. Conclusion 
 

The two MATLAB procedures gaussdbl and gausscub introduced in this paper can be used to 

automatically evaluate double and triple integrals respectively on irregular regions, which can be 

taught as basic algorithms in, for example, a numerical integration course. The performances of 



 The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823 

174 

 

gausscub and triplequad (gaussdbl, TwoD and dblquad) are discussed on several examples, and it is 

shown that the gaussdbl and gausscub are effective and capable programs for approximating 

numerically double and triple integrals. Although gausscub appears to be more efficient than 

triplequad for many examples, yet the degrees of accuracy of approximations computed by 

gausscub are very poor for some complicated integrals, especially for integrands with peaks. We 

need to develop more efficient algorithms for triple integrals. 
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